×
登录

还不是会员?立即注册

×
寻回密码

我们会将您的密码发送至您的邮箱,请注意查收!

×
注册
*
*
*
*
*
*

已有账号?

×
注册

在以下条款中,"用户"是指向天美(中国)网站申请注册成为会员的个人或者单位。

用户同意此在线注册条款之效力如同用户亲自签字、盖章的书面条款一样,对用户具有法律约束力。 只有用户完全同意所有服务条款并完成注册程序,才能成为天美(中国)网站的正式会员用户。本注册条款自用户注册成功之日起在用户与天美(中国)之间产生法律效力。

 

第一条 提供个人信息

1-1 用户承诺并保证自己是具有完全民事行为能力和完全民事权利能力的自然人、法人、实体和组织。用户在此保证所填写的用户信息是真实、准确、完整、及时的,并且没有任何引人误解或者虚假的陈述,且保证天美(中国)可以通过用户所填写的联系方式与用户取得联系。

1-2用户承诺将及时更新其用户信息以维持信息的有效性。

1-3如果用户提供的资料或信息包含有不正确、不真实的信息,天美(中国)保留取消用户会员资格并随时结束为该用户提供服务的权利。

 

第二条 邮件通知

用户充分理解,天美(中国)将通过电子邮件的方式与注册会员保持联络及沟通,用户在此同意天美(中国)通过电子邮件方式向其发送包括会员信息、天美(中国)产品及服务信息在内的相关商业及非商业联络信息。

 

第三条 会员身份确认

3-1 用户注册成功后将得到一个用户名和密码,用户凭用户名和密码享受天美(中国)向其会员用户提供的产品和服务。

3-2 用户将对用户名和密码安全负全部责任,并且用户对以其用户名进行的所有活动和事件负全责。用户可以随时修改密码。

3-3 用户若发现任何非法使用用户帐号或存在安全漏洞的情况,请立即通告天美(中国)。

 

第四条 服务条款的修改和服务体系修订

天美(中国)有权在必要时修改服务条款,天美(中国)服务条款一旦发生变动,将会在重要页面上提示修改内容。如果不同意所改动的内容,用户可以主动取消获得的网络服务。如果用户继续使用天美(中国)网络服务,则视为接受服务条款的变动。

 

第五条 用户的权利和义务

5-1 用户有权利使用自己的用户名和密码随时登录天美(中国)网站访问需要的资源。

5-2用户保证不会利用技术或其他手段破坏及扰乱天美(中国)网站。

5-3用户应尊重天美(中国)网站及其他第三方的知识产权的合法权利,并保证在发生上述事件时尽力保护天美(中国)及其合作伙伴等免于因该等事件受到影响或损失;天美(中国)保留用户侵犯天美(中国)网站知识产权时终止向该用户提供服务的权利。

 

第六条 天美(中国)的权利和义务

6-1天美(中国)承诺对用户资料采取对外保密措施,不向第三方披露用户资料,不授权第三方使用用户资料,除非:

6-1-1依据法律法规的规定应当提供;

6-1-2行政、司法等有权部门要求天美(中国)提供;

6-1-3用户同意天美(中国)向第三方提供;

6-1-4天美各分子公司和代理商需要使用用户个人信息。

6-2 天美(中国)有权利对用户进行审查并决定是否接受用户成为天美(中国)会员。

6-3 天美(中国)保留在用户违反国家、地方法律法规规定或违反本在线注册条款的情况下终止为用户提供服务并终止用户帐号的权利,并且在任何情况下,天美(中国)对任何间接、偶然、特殊及继起的损害不负责任。

 

第七条 服务的终止

7-1 用户有权随时申请终止其会员资格。

7-2用户违反国家、地方法律法规规定或违反本在线注册条款的情况下,天美(中国)提前通知用户后可以提前终止服务。

 

第八条 争议解决及法律适用

8-1 因本服务条款有关的一切争议,双方当事人应通过友好协商方式解决。如果协商未成,双方同意向天美(中国)主要经营地的人民法院起诉。

8-2 本注册条款的效力、解释、履行和争议的解决均适用中华人民共和国法律法规和计算机、互联网行业的规范。

 

第九条 不可抗力

9-1 因不可抗力或者其他意外事件,使得本条款履行不可能、不必要或者无意义的,遭受不可抗力、意外事件的一方不承担责任。

9-2 不可抗力、意外事件是指不能预见、不能克服并不能避免且对一方或双方当事人造成重大影响的客观事件,包括但不限于自然灾害如洪水、地震、瘟疫流行和风暴等以及社会事件如战争、动乱、政府行为等。

9-3 用户同意鉴于互联网的特殊性,黑客攻击、互联网连通中断或者系统故障等属于不可抗力,由此给用户或者第三方造成的损失不应由天美(中国)承担。

 

用户在此再次保证已经完全阅读并理解了上述会员注册条款并自愿正式进入天美(中国)会员在线注册程序。

×
注册
恭喜您注册成功!

需要到您的邮箱完成验证才可登录

Dye-Sensitised Solar Cells (DSSCs); Understanding and Optimizing Energy and Electron Transfers Throu

Dye-Sensitised Solar Cells (DSSCs); Understanding and Optimizing Energy and Electron Transfers Through Transient Absorption Data

 

Introduction to DSSCS

The Sun, whose light energy hitting Earth is several times greater than the global need, has become a growing source of green energy production with hopes of decreasing the amount of fossil fuels burned. However, current solar panels based on silicon require high cost material processing techniques and can contain caustic materials. The development of next generation solar fuel sources, based on dye sensitization and subsequent energy and electron transfers to drive current, or hydrogen production and water oxidation, will rely on understanding the fundamental photophysical properties of the dyes and their device constructs. The Edinburgh Instruments LP980 Transient Absorption Spectrometer is the world’s only  commercial system capable of making time-gated spectral transient measurements with an ICCD detector and kinetic lifetime traces from nanoseconds to seconds to fully understand the photoinduced energy and electron transfers associated with Dye-Sensitised Solar Cells (DSSCs).
 

Figure 1: The Edinburgh Instruments LP980 Spectrometer
 
Research

Researchers at Florida State University, under Prof. Kenneth Hanson, have utilized an L980 spectrometer to study the energy and electron transfer characteristics of a self-assembled DSSC on TiO2. The bilayers contain two complimentary dyes to maximize light absorption, facilitate efficient, directional energy/electron transfer, and minimize unwanted recombination (ACS Appl. Mater. Interfaces 2016, 8, 28633-28640).

 

Figure 2: Multi-layer, self-assembled DSSC construct studied by Prof. Hanson and his team at Florida State University.
 

The bilayer DSSC system comprises a TiO2 nanoparticles electrode, with a ruthenium dye linked through a zirconium bridge to a triphenylamine-based dye. This bilayer construct promotes broadband absorption of light, and is energetically favourable for the funneling of energy and electrons to the TiO2 surface for photocurrent production.
 

Figure 3: Photo-induced transient absorption spectra of the individual dyes attached to TiO2, and the self-assembled, bilayer DSSC construct 10 ns after laser excitation (laser exc. = 532 nm).


The defined spectral features in the transient absorption of each individual dye (Figure 3) shows that upon photoexcitation, each dye undergoes electron transfer to the TiO2. In the bilayer system, the spectra resemble that of p1M+; consistent with intermolecular energy and electron transfer as well as interfacial electron transfer as depicted in Figure 4.

Figure 4: The proposed energy and electron transfer events in a novel bilayer, self-assembled DSSC with an increased efficiency relative to the single dye based DSSCs. 
 
Conclusion

Utilizing bilayer DSSCs that are designed to maximize energy and electron transfers rates and minimize unwanted recombination were shown to increase solar energy conversion efficiencies by more than 10% relative to their single dye constructs. Photoinduced energy and electron transfer intermediates were recorded by an Edinburgh Instruments LP980 Transient Absorption Spectrometer. This enabled the structure-function relationship in this novel material whose properties can be translated into devices for solar energy production.

Figures reprinted with permission from ACS Appl. Mater. Interfaces 2016, 8, 28633-28640. Copyright 2016 American Chemical Society.
 

The LP980 for DSSCS Research

If you are working in the field of DSSCS, why not get in touch to find out how the LP980 can be used to help you with your research.

For more information on LP980 Flash Photolysis, please visit Edinburgh Instrument website: https://www.edinst.com





Online reading